Все о транспорте
 

Исследование и оценка предельных возможностей проходческого специализированного перегружателя

Материалы » Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий » Исследование и оценка предельных возможностей проходческого специализированного перегружателя

Страница 4

1 – JJ = 4, Lo = 6 м; 2 – JJ =8, Lo =12 м;

3 – JJ = 12, Lo = 18 м; 4 – JJ = 16, Lo = 24 м.

Формирование объёма груза на выходе

Формирование высоты слоя на выходе

Изменение объёма груза и высоты слоя в ячейках по номерам циклов ТТО

Изменение случайного среднего размера кусков на выходе

Рис. 4.5. Результаты моделирования рабочего процесса клинового ТТО в среде Mathcad

Рис. 4.6. Формирование грузопотока клиновым ТТО при погрузке () и манёврах ()

На рисунке 4.7 проиллюстрировано соотношение объёмов горной массы, поступивших на вход перегружателя (линия VШПМ), и выгруженных через последнюю ячейку для тех же четырёх вариантов ТТО.

Как видно из таблиц 4.2 и 4.3 и графиков, во всех вариантах пропускная способность ТТО соответствует производительности на входе. Ограничивающим фактором является максимальная высота слоя транспортируемого груза: VШПМ = 0,231 м3/цикл (q = 2,58 м3/мин) Hсл.max = 0,37 м; при VШПМ = 0,335 м3/цикл (q = 3,75 м3/мин) Hсл.max = 0,46 м.

Рис. 4.7. Зависимость объёмов, выгруженных ТТО через последнюю ячейку, от номера цикла ТТО; VШПМ – накопленный объём груза

При увеличении длины перегружателя растёт время запаздывания выхода материала через конечную ячейку. Однако это обстоятельство не снижает качества функционирования перегружателя, так как значительная доля объёма груза транспортируется к выходу в период паузы в подаче груза на перегружатель.

Функционирование перегружателя при случайном изменении размера куска представлено в приложении 2. Моделирование рабочего процесса выполнено для оценки влияния следующих факторов: число ячеек перегружателя JJ = 4; 8; 12; 16; входной грузопоток ШПМ (Mвх) = 0,231; 0,335 м3/цикл; входной грузопоток ШПМ (Mвх) = 0,231; 0,335 м3/цикл; коэффициент вариации входного грузопотока =0,2; 0,3; 0,4; средний размер куска в штабеле dср(MDср) = 0,2; 0,3; 0,4 м; количество циклов ТТО, в течение которых на вход подаётся груз К = II; К = II/3.

В качестве базовых параметров приняты:

JJ = 16; Mвх = 0,231 м3/цикл; =0,2; MDср = 0,2; К =II/3.

При разработке программы в систему функционирования клинового ТТО внесены следующие дополнительные ограничения:

1) если коэффициент вариации размера куска на входе или выходе из ячейки превышает 0,25, то принимается предельное значение (SDвых/MDср)= 0,25. Это условие установлено на основе соотношения (2.3):

.

В обозначениях, принятых в программе моделирования, условие записывается следующим образом:

;

2) объём груза в ячейке и на выходе из ячейки я ³ 0; вых ³ 0;

3) моделирование среднего случайного размера куска в малом выделенном объёме: я; вых производится по усечённому нормальному закону распределения с ограничениями 0,4 dср £ di,j £ 0,8 dmax, где dср, dmax – средний, максимальный размер куска в штабеле.

В каждом варианте в результате моделирования устанавливались следующие зависимости и числовые характеристики (рис. 4.5):

формирование грузопотока на входе выхi,0;

формирование случайного грузопотока на выходе последней ячейки – в функции порядкового номера цикла работы ТТО:

выхi,JJ = f1 (i);

Страницы: 1 2 3 4 5 6 7

 
 

Распределение рабочих зон ТР по специальностям и квалификациям
Ориентировочное число исполнителей по каждой специальности № п/п Рабочие зоны ТР по специальности C трп Стр Число рабочих Разряд Расчет Принято 1 Мотористы 0,394 0,425 9,13 9 III, IV, V Слесарь по ремонту топливной аппаратуры 0,394 0,425 9,13 9 III, IV, V 2 Слесарь по ремонту агрегатов трансмисси 0,394 0,029 0,62 1 IV 3 Слесари по ремонту ходо ...

Определение горизонтальных нагрузок от ветра на провода
Нагрузка на контактный провод 2МФ – 100. Режим максимального ветра. Рст - статическая составляющая ветровой нагрузки, действующая на контактный провод: Рст = qр × Сх × H × 10-4 =542,959× 1,55 ×11,8 ×10-4 = 0,99 Сх − аэродинамический коэффициент лобового сопротивления, равный 1,55; H − высота контактного провода, равная 11,8 мм. − коэффициент, учитывающий неравномерность действия вет ...

Выход на землю через надкрыльные люки
Правильное использование надкрыльных люков значительно сокращает время выхода пассажиров. Пассажиры должны выходить через эти люки по способу «сначала — нога, затем — голова». Больших объяснений этот способ не требует. Обычно пассажиры повторяют действия впереди выходящих. Иногда отдельные пассажиры применяют свои приемы, например для более удобного выхода через окно предварительно становятся на сиденье. Если такой вариант ускоряет выход, остал ...