Все о транспорте
 

Математические модели процесса внедрения ковша в штабель

Страница 5

Следовательно, механическая характеристика двигателя, приведённая к поступательному движению машин , может быть получена из механической характеристики гидромотора (рис. 3.4).

Рис. 3.4. Приведённая к поступательному движению механическая характеристика ходового гидропривода

Внешняя характеристика содержит 3 участка: 1 – линейный, в котором без больших погрешностей можно положить м = мо = const при ; 2 – гиперболический, на котором , где А – постоянная, выражение для которой приводится ниже. Этот участок реализуется при ; 3 – предельный, где . Этот участок реализуется при разгоне машины. Точка Тдко определяет силу тяги при движении машины вне штабеля. Этой силе тяги соответствует скорость перемещений мо. Порядок расчёта глубины внедрения ковша в штабель для машин с регулируемым гидроприводом ходового механизма (точное решение):

1) глубина внедрения ковша на участке 1, где м = мо = const, =0 определяется как статическая составляющая из уравнения Wвн(S1) = Tx;

2) на участке 2 дополнительная глубина внедрения определяется как результат решения дифференциального уравнения:

.

Начальные условия: t = 0; S = S1; ; граничные условия: при S = S2:

.

По результатам решения находим S2, м2;

3) на участке 3 двигатель отключается, реализуется остаток кинетической энергии машины:

.

Приближённое решение находится как сумма глубины внедрения двух этапов:

I этап – внедрение до начала пробуксовки гусениц:

,

II этап – двигатель отключается, кинетическая энергия машин реализуется в виде дополнительной глубины внедрения DS:

.

Графическое представление процесса дано на рисунке 3.5.

Рис. 3.5. Силовая диаграмма трёхэтапного процесса внедрения

Для оценки погрешности решения задачи динамики внедрения приближённым методом (рис. 3.6) представлены данные по глубине внедрения ковша точным и энергетическим методом (погрузочная машина МПК-3).

Рис. 3.6. Зависимость глубины внедрения ковша машины МПК-3

от крепости горной массы:

точное решение; приближённое решение

Как видно из графиков, максимальное различие между решением исходного дифференциального уравнения и приближённым решением с помощью энергетических соотношений составили 3,7 %. Это позволяет считать энергетический метод приемлемым для построения моделей формирования единичных черпаний.

Выполнен также анализ параметров машины МПК-1000Т с позиций реализации возможностей гидравлического напорного механизма при погрузке горной массы крепостью f Î 7; 10; 13 (табл. 3.2).

Таблица 3.2

Результаты расчёта рациональных параметров механизма выдвижения и глубины внедрения ковша машины МПК-1000Т

Наименование показателей

Единицы измерения

Значение

Минимальная скорость выдвижения телескопической стрелы

м/с

0,41

Диаметр поршня напорного гидроцилиндра

м

0,085

Расход насоса

м3/с

2,4×10-3

Максимальное напорное усилие – горизонтальная составляющая

H

6,84×104

Глубина внедрения ковша

при f = 7

м

0,95

при f = 10

0,80

при f = 13

0,71

Страницы: 1 2 3 4 5 6

 
 

Функция оптимизации и пространство проектирования
Конструкция лопасти, не считая узла крепления, состоит из лонжерона, расположенного в передней части сечения, и хвостового отсека с поперечными разрезами. Этот отсек необходим для образования подъемной силы, а всю нагрузку воспринимает лонжерон. Таким образом, вес хвостовой части известен и оптимальному проектированию подлежит лонжерон. Целевой функцией оптимизации лонжерона является его масса M = L·S· (h1 + h2)·ρ где L – длина лонжерона ...

Перерабатывающая способность сортировочных горок
Суточная перерабатывающая способность горки – это максимальное число вагонов, которое может быть переработано на горке за сутки. Определяется по формуле , (вагонов) где - коэффициент, учитывающий возможные перерывы в использовании горки из-за враждебных передвижений (для объединенного парка приема без петли =0,95); - время занятия горки в течении суток выполнения постоянных операций (техническое обслуживание горочных устройств, расформиров ...

Планирование мероприятий по повышению безопасности движения при проектировании и реконструкции дорог
При планировании мероприятий по повышению безопасности движения при реконструкции дорог следует учитывать следующие основные факторы: основные цели реконструкции, протяженность существующей дороги, ее технические параметры и транспортно-эксплуатационные качества, меняющиеся по длине дороги, количество и распределение по длине дороги опасных участков, требования к техническим параметрам дороги после ее реконструкции, сроки реконструкции, обеспеч ...