Все о транспорте
 

Математические модели процесса внедрения ковша в штабель

Страница 4

= Aдк × hрх – g(mм + mв) (w¢ cosa – sina), (3.17)

где mпр = (1 + Кj) × (mм + mв) – приведённая к поступательному движению масса системы, кг; mпост – масса поступательно движущихся частей, кг.

Уравнение (3.17) описывает процесс внедрения ковша в штабель на первом этапе, то есть до срыва колёс в пробуксовку. Начальные условия: t = 0; S = 0: . Величину можно найти из (3.17) при =0, Wвн(S) = 0, то есть .

Решение выполняется до S = S1, то есть до реализации глубины внедрения первого этапа. Условие окончания первого этапа: сила сцепления Тсц становится равной предельно допустимой, то есть Тсц.max = mм × g × y  cosa или

. (3.18)

Таким образом, при решении уравнения (3.17) в каждой точке t = ti определяется S = Si, , и проверяется выполнение условия (3.18).

На втором этапе Тсц = Тсц.max, возникает избыточное скольжение колёс, сила сцепления остаётся постоянной и равной Тсц.max [57]. Нагрузка на двигатель сохраняется постоянной. Внедрение ковша описывается одним уравнением (3.14), которое теперь имеет вид:

. (3.19)

Если умножить левую и правую часть уравнения (3.19) на dS и проинтегрировать левую часть по u, а правую по S, то получим энергетическое соотношение:

. (3.20)

Графическая интерпретация решения представлена на рисунке 3.3. Решение уравнения (3.20) сводится к отысканию положения точки S2, в которой это условие выполняется.

Рис. 3.3. Графическая интерпретация решения уравнения (3.20)

Для жёстких механических характеристик асинхронных двигателей хода возможно более простое решение задачи динамики внедрения. Так как на первом этапе мало, то, пренебрегая инерционной составляющей на первом этапе, решение может быть получено простым пересечением кривой W(S) и линии статического напора, то есть решением уравнения:

. (3.21)

Во втором этапе решается уравнение (3.20). Ошибка, которая может возникнуть от такого упрощения, зависит от жёсткости механической характеристики двигателя, то есть от величины Sск.ном Для оценки погрешности решения задачи динамики внедрения приближённым методом ниже (табл. 3.1) представлены сопоставительные данные по глубине внедрения ковша в штабель, определённые точным и энергетическим методом (погрузочная машина 1ППН-5, оборудованная ходовым движителем.

Как видно из результатов расчёта, ошибка приближённого энергетического метода не превышает 3,5 % для двигателей с мягкой механической характеристикой (Sном = 0,05). В других вариантах расчёта расхождение величин S2, полученных решением дифференциальных уравнений и энергетическим методом, составляет 0,5–1,2 %. Это позволяет использовать приближённые энергетические соотношения для анализа параметров ковшовых погрузочных машин во взаимосвязи с параметрами ковшей и ходовых приводов.

Таким образом, приближённый энергетический метод может эффективно использоваться для расчёта глубины внедрения ковша в штабель колёсно-рельсовых ШПМ в общей системе математических моделей формирования потока единичных черпаний.

Решение уравнения динамики внедрения ковша в штабель для машин группы МПК-3, которые оборудуются, как правило, регулируемым гидроприводом ходовой части, выполняется аналогично [55]. В качестве регулятора используется устройство, обеспечивающее постоянство мощности, то есть реализуется принцип q×p = const, где q – расход насоса; р –давление.

Внедрение ковша также происходит в два этапа. На первом этапе уравнения динамики процесса внедрения имеют вид (3.14) – (3.15) и после аналогичных преобразований сводятся к виду (3.17). Величина тягового усилия Tдк, приведённая к начальной окружности ведущей звёздочки rзв, определяется также соотношением:

Страницы: 1 2 3 4 5 6

 
 

Основные понятия и определения независимой технической экспертизы
Целью независимой технической экспертизы транспортного средства при ОСАГО (далее по тексту - независимая техническая экспертиза) является установление следующих обстоятельств, влияющих на выплату страхового возмещения по договору обязательного страхования гражданской ответственности владельцев транспортных средств: 1) наличие и характер технических повреждений транспортного средства; 2) причины возникновения технических повреждений транспортн ...

Схемы стендов для испытаний
Так как АКПП является преобразователем крутящего момента, передаваемого от двигателя к ведущим колесам автомобиля, то наиболее употребительна схема стенда, называемая основной (рис. 2): двигатель 1 (автомобильный двигатель или его имитатор), объект испытаний 2 (гидротрансформатор или АКПП), тормоз 3 (имитатор нагрузки на выходной валу гидротрансформатора или АКПП, пропорциональной нагрузке на ведущих колесах автомобиля). Рис. 2 Основн ...

Группы танкеров
В мировом танкерном флоте выделяется несколько групп. Первая группа – танкеры водоизмещением до 50 тыс. т. Это танкеры, перевозящие нефтепродукты и неагрессивные химические грузы. Суда дедвейтом до 10 тыс. т заняты перевозкой малых партий нефти и химпродуктов в прибрежном морском плавании на коротких линиях. Танкеры дедвейтом 10–50 тыс. т перевозят нефтепродукты крупным потребителям. Танкеры дедвейтом 20 тыс. т предназначены для арктического пл ...