Все о транспорте
 

Лопасти несущего винта вертолета

Страница 1

Лопасть НВ представляет собой вращающееся крыло большого удлинения и характеризуется определенной совокупностью геометрических и кинематических параметров, относящихся ко всей лопасти или к ее отдельном сечениям [6].

Лопасти при поступательном полете вертолета вращаются вокруг оси НВ, перемещаются вместе с вертолетом в пространстве, изменяют свое угловое положение, поворачиваясь в указанных шарнирах при каждом обороте винта [6].

Аэродинамика несущей поверхности определяется прежде всего формой ее поперечных сечений. Профиль представляет собой контур, образующийся при пересечении крыла или лопасти плоскостью, перпендикулярной ее продольной оси, и характеризующийся совокупностью геометрических параметров. Прямая, соединяющая две наиболее удаленные точки профиля, называется хордой [6]. От внешних форм лопасти зависит получение высоких значении подъемной силы и максимальной скорости горизонтальною полета при заданной мощности двигателя и т. д. Поэтому профиль лопасти должен обладать большим аэродинамическим качеством, малым изменением положения центра давления в рабочем диапазоне углов атаки сечений лопасти, высокими значениями коэффициента подъемной силы Сy max, угла атаки сечения αкрит. и крутящего момента Мкр., обеспечивать способность перехода на режим самовращения (авторотации) в большом диапазоне углов атаки и возможность простого конструктивного и технологического выполнения лопасти [5].

Круткой лопасти Δφ называется разность углов установки в комлевом и концевом сечениях лопасти (рисунок 1.5). У большинства лопастей крутка составляет 6–12°. Крутку из соображений аэродинамики (улучшения КПД) желательно увеличивать, но при этом в конструкции лопасти растут переменные напряжения, что снижает ее ресурс. Крутка дает более равномерное распределение аэродинамических сил вдоль лопасти и уменьшает индуктивные потери НВ, вызываемые неравномерностью индуктивного потока. Кроме того, крутка увеличивает углы атаки сечений лопасти, расположенных близко к оси винта, где окружная скорость мала, что повышает их эффективность [1].

Рисунок 1.5 – Незакрученная (а) и закрученная (б) лопасти

Обычно лопасти несущих винтов вертолетов аналогично крыльям самолетов, имеют отрицательную геометрическую крутку, так что у комля углы атаки больше, чем на конце. Такая крутка приводит к затягиванию срыва потока на конце лопасти, идущей по потоку, и увеличивает значение критического изгибающего момента концевых профилей, что позволяет повысить скорость полета вертолета [5].

Форма лопасти в плане может быть прямоугольной, трапециевидной и смешанной (рисунок 1.6). Трапециевидные лопасти близки к оптимальным с точки зрения аэродинамики (наиболее схожи с эллиптической формой), имеют меньшие индуктивные и профильные потери. Однако чаще всего на вертолетах из технологических соображений применяются лопасти прямоугольной формы в плане [1].

Рисунок 1.6 – Формы лопастей в плане, где а – прямоугольная; б – трапециевидная; в – смешанная

Лопасть состоит из лонжерона и закрепленных на нем хвостовых отсеков, которые образуют основную несущую поверхность и формируют аэродинамический профиль лопасти.

Страницы: 1 2 3 4 5 6

 
 

Определение отметок расчетной головки рельса
Ориентиром для нанесения проектной линии (ПГР - проектной головки рельса) при реконструкции профиля пути служит линия расчетной головки рельса (РГР), а не линия бровки земляного полотна (последняя может быть засыпана или нарушена), как это принято при проектировании новых железнодорожных линий. Линия РГР представляет собой положение головки рельса, которое получилось бы при соблюдении проектной мощности (высоты) верхнего строения пути. Высота п ...

Определение температуры охлаждающей среды и скоропортящихся грузов
В международной системе единиц СИ температура измеряется по термодинамической температурной шкале Кельвина (К), которая строится в соответствии со вторым законом термодинамики, независимо от свойств термометрического вещества. Кроме термодинамической шкалы, являющейся основной, используется Международная практическая температурная шкала Цельсия (°C) 1948 года, основанная на шести постоянных температурных равновесиях между твердой и жидкой или ж ...

Расчет производственных площадей, выбор типового проекта ПТО
В курсовом проекте разрабатываю механический участок для ПТО. Площадь механического участка можно определить по формуле: ремонт трактор трудоемкость производственный м2 Где Fуч – площадь занимаемая оборудованием м2,эпсилон – Е коэффициент учитывающий рабочие зоны и проходы. Для механизированного участка-Е=3,0…. 3,5 Z=м2 Длина Z=4,3 Рекомендую выбрать площадь 4х6 м2 Зная количество тракторов и суммарную трудоемкость работ подбираем типов ...