Все о транспорте
 

Принцип полета вертолета и основные конструктивные отличия его от самолета

Материалы » Методика построения трехмерной твердотельной неоднородной модели лонжерона » Принцип полета вертолета и основные конструктивные отличия его от самолета

Страница 5

(2.13)

Функции формы удобнее записать в -координатах плоскости и -координаты. Получим

(2.14)

лонжерон энергия устойчивость тяга

Решение задачи проводилось в пакете прикладных программ Ansys. Модель построена на основе данных сечений. Вводились координаты изменения сечений и соединялись прямыми или сплайнами. Далее строились плоскости, ограниченные этими прямыми и сплайнами, после чего моделировались конечные объемные

Построение трехмерной модели осуществлялось по чертежу 333.3950.1100 СБ.

Схематично на рис. 1 показан лонжерон лопасти. Длина конструкции 661 см. Конструкция имеет характерные поперечные сечения (рис. 1.2-1.4)

Рис. 1.1

Геометрическое построение модели производилось по принципу "слева направо". Каждая деталь была разбита на несколько подконструкций, которые строились по точкам, через которые проводились линии. Кривые строились с помощью сплайн-линий и дуг окружностей разных радиусов, дуги окружностей строго соответствовали данным в чертежах. С помощью замыкающихся линий были образованы площади. Площади, в свою очередь, образуют контур объемов. На рис.1.2-1.4 изображены базовые поперечные сечения.

Рис. 1.2 Сечение 1-1

Рис. 1.3 Сечение 2-2

Рис. 1.4 Сечение 3-3

Далее, задавая параметры разбиения (задаем для каждой линии каждого объема число разбиений), получим конечноэлементную модель.

При построении сетки конечных элементов особое внимание уделяется проблеме сопряжения подконструкций между собой "узел в узел". Это обстоятельство налагает дополнительные условия на выбор параметров разбиения на отдельные конечные элементы каждой подконструкции.

Применяли конечный элемент SOLID186 – двадцатиузловой элемент, который описан подробнее выше в методе конечных элементов.

Нагрузка прикладывается в виде распределенной нагрузки, так чтобы равнодействующая сила была в точке, указанной на рисунках. На рисунках указаны истинные направления приложения нагрузки.

Страницы: 1 2 3 4 5 

 
 

Элементы кранцевой защиты
В последнее время на судах наибольшее распространение получили пневматические кранцы (рисунок 4.3), которые обладают большой энергоемкостью и обеспечивают малые контактные давления на корпус судна. Бескамерные кранцы имеют резиновую оболочку, укрепленную для восприятия больших нагрузок синтетическим или металлическим кордом. Толщина оболочки в зависимости от размеров кранцев составляет 9-30 мм. Одной из самых распространённых моделей кранцев я ...

Условие бескавитационной работы насоса, регулирование работы изменением частоты вращения
Имеется хар-ка насоса Н=f(Q). Насосная установка имеет всасыв-й (Т1) и напорный (Т2) трубопроводы. По извест. ур-ям строятся кривые потребного напора для всего трубопровода и для всасыв-го труб-да. Для реш-я з-чи необходимо иметь кривую допускаемой вакуум—й высотой всасыв-я- Ндопвак=f(Q). Условие безкавит-й р-ты н-са явл-ся: Ндопвак>Нвак, где Ндопвак-допускаемая вукуум-я высота всасывания. Нвак=Z1+Нт1. т. А-рабоч-я точка. Определяет параметр ...

Расчет гидротрансформатора. Постановка задачи расчета гидротрансформатора
При расчете гидротрансформатора задаются формой и размерами круга циркуляции, а также размерами, определяющими размещение решеток отдельных колес, кроме этого, определяют значения расхода жидкости, протекающей по проточной части, и напор, развиваемый насосом. Профилирование лопастей рабочих колес и определение внешних и внутренних характеристик гидротрансформатора также входит в расчет. Исходя из требований, изложенных в задании на проектирова ...