Все о транспорте
 

Конструирование узлов стыка лопасти с втулкой

Страница 2

Рисунок 1.19 – Формы разрушения композита в зоне размещения болтового соединения, где а – разрыв; б – срез; в – смятие; г – срез болта; d – диаметр болта; с – вынос болта от кромки стыкуемого элемента; b; h – ширина и толщина пояса; Р – действующая на болт сила растяжения

Наибольшая прочность на растяжение болтового соединения характерна для композита с ориентацией волокон [0/± 45°], причем разрушающие напряжения мало изменяются в широком диапазоне соотношений продольных и поперечных слоев.

Прочность соединения при срезе определяется в основном межслойным сдвигом или сдвигом в плоскости армирования композита. Наиболее низкая прочность при срезе будет для однонаправленных материалов, когда ориентация волокон совпадает с направлением нагружения. Максимальная прочность достигается при ориентации волокон под углами ± 45° за счет повышения прочности при сдвиге и снижении концентрации напряжений в зоне отверстия.

Прочность композитов при смятии болтом представляет собой весьма условную характеристику материала, т.к. при нагружении пакета через болт около него устанавливается сложное напряженное состояние. В инженерном расчете соединений принимается предположение о равномерном распределении напряжений сжатия по диаметральной плоскости.

Наибольшую прочность при смятии имеет материал, образованный слоями с ориентацией 0° и ±φ. Здесь же важное значение имеет последовательность расположения слоев, влияющая на напряжения межслоевого сдвига и вызывающая кромочный эффект. Установлено, что прочность соединений углепластика с неравномерной укладкой 0°/0°/+ 45°/– 45°/0°/0° на 16 % меньше, чем с равномерной 0°/+ 45°/0°/0°/– 45°/0°.

Исследования влияния диаметра отверстия на прочность композита при смятии показывают, что она монотонно уменьшается с увеличением отношения d/h (рисунок 1.19) [8].

Из произведенного литературного обзора можно сделать следующие выводы:

1. К авиационным конструкциям и, в частности, к элементам несущего винта вертолета предъявляются различные требования: надежности, прочности, жесткости, технологичности, оптимальности по массе, аэродинамике, долговечности. Эти требования выполнимы, однако вместе с тем, они являются ограничивающими друг друга. Взаимное влияние прослеживается между всеми требованиями, что ведет к компромиссным решениям в конструкциях элементов несущего винта.

2. Для деталей из композитов, ввиду особенностей структуры материала, выбирается увеличенный коэффициент безопасности f = 2,0–2,5, либо занижается уровень допустимых напряжений до 2/3σв при расчете конструкции на предельную несущую способность.

3. Лопасти во время полета испытывают аэродинамические и массовые нагрузки. Поскольку лонжерон является силовым элементом лопасти, то он испытывает влияние передаваемых ему нагрузок, что приводит к возникновению усилий в сечениях.

4 Лонжерон подвергается действию центробежной Nцб силы, поперечной силы Q, крутящего Mкр и изгибающего Mизг момента.

5. Расчетными для лонжерона являются нагрузки от центробежной силы N и крутящего момента Mкр.

6 Масса лонжерона, как основного силового элемента, составляет бóльшую часть массы лопасти. То есть, массовая характеристика лопасти γ0 в значительной степени зависит от массы лонжерона.

7. Массовая характеристика является отношением действующих на лопасть аэродинамических сил к инерционным силам. Она определяет взаимосвязь массы лопасти и нагрузок, возникающих в ней. Для малых лопастей (R = 4 м) массовая характеристика равна γ0 = 4,5 и для больших лопастей (R ≥ 16 м) – γ0 = 7. Чем больше массовая характеристика для заданной лопасти, тем меньше возможная минимальная конструктивно-технологическая масса лопасти.

Страницы: 1 2 

 
 

Выбор и обоснование схемы самолёта
В качестве расчётной схемы самолёта выбираем нормальную аэродинамическую схему самолёта. По расположению крыла выбираем низкоплан. Поскольку проектируемый самолёт предназначен для полётов с относительно большими скоростями, форму крыла в плане принимаем стреловидную. В качестве силовой установки выбираем три турбореактивных двигателя(Д30-KY), расположенных под крылом, на пилонах. Наличие двух двигателей повышает безопасность в случае отказа одн ...

Разработка механизированной электронаплавки
1. Наименование операции: вибродуговая наплавка резьбовой шейки распределительного вала ЗИЛ 130. 2. Толщина наплавляемого слоя – 0,5 мм (с D1=34 до D2=36 мм на длине 18 мм). 3. Станок модели: переоборудованный 1К62. 4. Передаточное число редуктора: 40. 5. Обороты детали: n = 5…6 мин –1. 6. Шаг наплавки S = 2,1…2,3 мм/об. Содержание операции Наплавить при помощи переоборудованного станка под вибродуговую наплавку распределительный вал авт ...

История создания и развития РДАУП «Автобусный парк № 2»
До 1935 года в городе Мозыре автотранспортных предприятий не было. В 1935 году была создана первая организация «Автодор», в 1939 году переименованная в спецавтобазу «Союзтранс», которая функционировала до 1941 года. После освобождения города Мозыря от немецко-фашистских захватчиков 27 января 1944 года была создана автотранспортная колонна (АТК). В связи с увеличением грузовых и пассажирских перевозок 20 апреля 1955 года Мозырская АТК была раз ...