Все о транспорте
 

Конструирование узлов стыка лопасти с втулкой

Страница 2

Рисунок 1.19 – Формы разрушения композита в зоне размещения болтового соединения, где а – разрыв; б – срез; в – смятие; г – срез болта; d – диаметр болта; с – вынос болта от кромки стыкуемого элемента; b; h – ширина и толщина пояса; Р – действующая на болт сила растяжения

Наибольшая прочность на растяжение болтового соединения характерна для композита с ориентацией волокон [0/± 45°], причем разрушающие напряжения мало изменяются в широком диапазоне соотношений продольных и поперечных слоев.

Прочность соединения при срезе определяется в основном межслойным сдвигом или сдвигом в плоскости армирования композита. Наиболее низкая прочность при срезе будет для однонаправленных материалов, когда ориентация волокон совпадает с направлением нагружения. Максимальная прочность достигается при ориентации волокон под углами ± 45° за счет повышения прочности при сдвиге и снижении концентрации напряжений в зоне отверстия.

Прочность композитов при смятии болтом представляет собой весьма условную характеристику материала, т.к. при нагружении пакета через болт около него устанавливается сложное напряженное состояние. В инженерном расчете соединений принимается предположение о равномерном распределении напряжений сжатия по диаметральной плоскости.

Наибольшую прочность при смятии имеет материал, образованный слоями с ориентацией 0° и ±φ. Здесь же важное значение имеет последовательность расположения слоев, влияющая на напряжения межслоевого сдвига и вызывающая кромочный эффект. Установлено, что прочность соединений углепластика с неравномерной укладкой 0°/0°/+ 45°/– 45°/0°/0° на 16 % меньше, чем с равномерной 0°/+ 45°/0°/0°/– 45°/0°.

Исследования влияния диаметра отверстия на прочность композита при смятии показывают, что она монотонно уменьшается с увеличением отношения d/h (рисунок 1.19) [8].

Из произведенного литературного обзора можно сделать следующие выводы:

1. К авиационным конструкциям и, в частности, к элементам несущего винта вертолета предъявляются различные требования: надежности, прочности, жесткости, технологичности, оптимальности по массе, аэродинамике, долговечности. Эти требования выполнимы, однако вместе с тем, они являются ограничивающими друг друга. Взаимное влияние прослеживается между всеми требованиями, что ведет к компромиссным решениям в конструкциях элементов несущего винта.

2. Для деталей из композитов, ввиду особенностей структуры материала, выбирается увеличенный коэффициент безопасности f = 2,0–2,5, либо занижается уровень допустимых напряжений до 2/3σв при расчете конструкции на предельную несущую способность.

3. Лопасти во время полета испытывают аэродинамические и массовые нагрузки. Поскольку лонжерон является силовым элементом лопасти, то он испытывает влияние передаваемых ему нагрузок, что приводит к возникновению усилий в сечениях.

4 Лонжерон подвергается действию центробежной Nцб силы, поперечной силы Q, крутящего Mкр и изгибающего Mизг момента.

5. Расчетными для лонжерона являются нагрузки от центробежной силы N и крутящего момента Mкр.

6 Масса лонжерона, как основного силового элемента, составляет бóльшую часть массы лопасти. То есть, массовая характеристика лопасти γ0 в значительной степени зависит от массы лонжерона.

7. Массовая характеристика является отношением действующих на лопасть аэродинамических сил к инерционным силам. Она определяет взаимосвязь массы лопасти и нагрузок, возникающих в ней. Для малых лопастей (R = 4 м) массовая характеристика равна γ0 = 4,5 и для больших лопастей (R ≥ 16 м) – γ0 = 7. Чем больше массовая характеристика для заданной лопасти, тем меньше возможная минимальная конструктивно-технологическая масса лопасти.

Страницы: 1 2 

 
 

Определение времени разгона
При проведении расчетов полагаем, что разгон автомобиля на каждой передаче производится до достижения максимальных оборотов двигателя. Для определения времени разгона на каждой передаче определяем среднее ускорение: jср = (jн+jк)/2 (35) jср11 = (1,76+1,9)/2=1,83 м/с2 jср12 = (1,9+1,9)/2=1,9 м/с2 jср13 = (1,9+1,75)/2=1,825 м/с2 jср14 = (1,75+1,46)/2=1,605 м/с2 jср15 = (1,46+1,39)/2=1,425 м/с2 jср16 = (1,39+1,24)/2=1,315 м/с2 jср21 = (1, ...

Суммарный изгибающий момент относительно условного обреза фундамента
М = n × Gп × Zn + nк × Gкн × Zкн - − nкр × Gкр × Zкр + + Pн × hн + (Pк + Ризл) × hк + + Pоп × hоп Режим максимального ветра. Мов = 1× 188,62× 3,3 +1×60×1,8 −11,77×(1,2+1,7+2,2)−1× 40×1,3+ +47,83×8,8+(55, 7+40)×7+34,55×(9,55+8,75)+155,7×4,8 = 3234,23 даН×м Мов = 32,34 кН×м Режим гололеда. Мо ...

Характеристика детали и условия ее работы
Деталь, предлагаемая для проектирования – вал распределительный автомобиля ГАЗ-24. Эта деталь обладает следующими характеристиками. 1. Наименование детали: вал распределительный. 2. Класс детали: 2.(круглые стержни) 3. Номер детали по каталогу: 24-1006015 4. Количество деталей на один ремонтируемый двигатель: 1. 5. Материал: Сталь 45 ГОСТ 1050-88. 6. Твердость шеек HRC 54-62; 7. Масса детали: 12 кг. 8. Характер деформации: изгиб с круч ...