Все о транспорте
 

Объём единичного захвата ковшом. Предельная вместимость ковша и объём ссыпания

Страница 5

Результаты моделирования показали следующее:

фактическая вместимость ковша значительно ниже паспортной, то есть в документации указаны завышенные данные по вместимости ковша;

коэффициент потерь груза при 100%-м заполнении ковша достигает 0,44; ссыпание происходит в основном через открытую сторону ковша;

высокий уровень потерь груза объясняется, прежде всего, недостаточной шириной ковша и, как следствие, малой высотой заполнения ковша;

реальное заполнение ковша при погрузке породы крепостью 7; 10; 13 единиц не превышает 0,33 м3, что составляет около половины паспортной вместимости; главная причина такого положения – в ошибочном выборе центра вращения ковша и невозможности использовать энерговооружённость механизма подъёма ковша.

В результате выполненных исследований на имитационных моделях и оценки их адекватности по экспериментальным данным получены следующие результаты.

Уточнены известные математические модели сопротивлений внедрению и зачерпыванию. Обобщены выражения сопротивлений внедрению и черпанию на ковше с одной боковой стенкой; впервые введено влияние высоты штабеля в функции глубины внедрения ковша. Получены универсальные соотношения, позволяющие моделировать сопротивления ковшей произвольной формы в широком диапазоне условий применения.

Рассмотрены методы расчёта глубины внедрения с учётом ограничений по напорному усилию, кинетической энергии системы и возможностям привода механизма подъёма. Обоснована возможность при моделировании использовать упрощённые методы динамического расчёта. Доказана адекватность математических моделей по данным исследований других авторов.

Теория процесса наполнения ковшей уточнена с учётом процесса ссыпания материала через боковые стенки. Показано, что неадекватное отражение в моделях процесса ссыпания ведёт к значительным ошибкам при определении вместимости ковша и реального объёма зачерпывания.

Подготовлена необходимая исходная информация в виде математических моделей и процедур для разработки инженерной методики выбора рациональных вариантов ППТМ в конкретных условиях эксплуатации.

Страницы: 1 2 3 4 5 

 
 

Анализ состояния разработки математических моделей, описывающих функционирование проходческих погрузочно-транспортных модулей
Создание общей методологии выбора рациональных вариантов горнопроходческого оборудования целесообразно начать с погрузочно-транс-портной подсистемы. По трудоёмкости эта подсистема занимает 25–35 % трудозатрат проходческого цикла. Именно ППТМ в значительной мере определяет стохастические неопределённости в проходческой системе: взаимодействие погрузочных и транспортных машин со штабелем горной массы, имеющих гранулометрический состав как случай ...

Расчёт работы ПС на кольцевых маршрутах
Кольцевой маршрут: речной порт – завод ЖБК - котлован - микрорайон карьер – дорога – речной порт. А1-Б4; Б4-А3; А3-Б1; Б1-А2; А2-Б2; Б2-А1. Б4 А3 Время, tОБ, затрачиваемое автомобилем на оборот Маршрут речной порт – строительство, А1 Б3. tОБ = lM/VТ + n tn-p где lM = 14 + 4 + 12 +7 + 12 + 5 = 54 км – длина маршрута проходимого автомобилем за оборот. n = 3 – число гружёных ездок за оборот. tn-p = ...

Исследование рассматриваемых маршрутов
Подробная характеристика рассматриваемого маршрута приведена в таблице 3.2 и в таблице Б.1, а в таблице 4.1 отражены основные данные по указанному маршруту. Таблица 4.1 – Характеристика маршрута «Мозырь – Гостов» № п/п Показатель Ед. изм Значение 1 Протяженность маршрута (в одну сторону) км 22,9 2 Дни работы подвижного состава на маршруте день пятница, суббота, воскресенье 3 Количество рейсов в ...