Все о транспорте
 

Характеристика ускорений автомобиля

Страница 1

Характеристика ускорений - это зависимость ускорений автомобиля от скорости ja i = f(Va), [м/с2], при его разгоне на каждой передаче.

Указанные зависимости строим для случая разгона полностью загруженного автомобиля, на ровной горизонтальной дороге с асфальтобетонным покрытием. Величину ускорений при разгоне автомобилей рассчитываем из выражения:

, [м/с2] (17)

y - коэффициент суммарного дорожного сопротивления движения автомобиля по асфальтобетонному покрытию (y = f );

dвр – коэффициент, учитывающий инерцию вращающихся масс при разгоне автомобиля.

Коэффициент dвр рассчитываем по формуле:

(18)

Jм = 0,55 [кг/м2] - момент инерции маховика и разгоняющихся деталей двигателя;

Jк = 0,942 [кг/м2] - момент инерции колеса автомобиля;

n = 4 - общее число колес автомобиля.

Значения коэффициента dвр и ускорений при разгоне автомобиля рассчитываем для каждой передачи в КПП. Полученные при расчетах значения заносим в таблицу 6.

Таблица 6 – Значения ускорений, действующих при разгоне автомобиля

Передачи

Параметры

Частота вращения коленчатого вала, об/мин

700

800

900

1000

1100

1200

1300

1400

I

Vа , км/ч

7,5857133

8,669387

9,753059914

10,83673

11,92041

13,00408

14,08775

15,17143

Di

0,3714106

0,375589

0,379577024

0,383373

0,386978

0,390392

0,393615

0,396646

ψ1

0,0180518

0,018068

0,01808561

0,018106

0,018128

0,018152

0,018179

0,018207

Di - ψ1

0,3533588

0,357522

0,361491414

0,365268

0,36885

0,37224

0,375436

0,378439

ja i , м/с2

2,5580815

2,588219

2,616955936

2,644293

2,67023

2,694768

2,717905

2,739642

II

Vа , км/ч

13,893103

15,87783

17,86256042

19,84729

21,83202

23,81675

25,80148

27,78621

Di

0,2025061

0,2047

0,206778024

0,20874

0,210586

0,212315

0,213928

0,215426

ψ1

0,0181737

0,018227

0,018287164

0,018355

0,018429

0,018511

0,018599

0,018695

Di - ψ1

0,1843323

0,186473

0,18849086

0,190385

0,192157

0,193805

0,195329

0,196731

ja i , м/с2

1,6129063

1,631639

1,649293242

1,66587

1,681368

1,695788

1,70913

1,721394

III

Vа , км/ч

21,27034

24,30896

27,34758

30,3862

33,42482

36,46344

39,50206

42,54068

Di

0,1487667

0,150216

0,151557847

0,152791

0,153917

0,154934

0,155844

0,156645

ψ1

0,0184072

0,018532

0,018673101

0,018831

0,019005

0,019197

0,019404

0,019629

Di - ψ1

0,1303595

0,131684

0,132884746

0,13396

0,134911

0,135738

0,136439

0,137016

ja i , м/с2

1,1955781

1,20773

1,218737974

1,228603

1,237325

1,244903

1,251338

1,25663

IV

Vа , км/ч

30,170695

34,48079

38,79089362

43,10099

47,41109

51,72119

56,03129

60,34139

Di

0,0917957

0,092361

0,092812638

0,093152

0,093378

0,093492

0,093492

0,09338

ψ1

0,0188192

0,01907

0,01935426

0,019672

0,020023

0,020408

0,020826

0,021277

Di - ψ1

0,0729764

0,073291

0,073458378

0,07348

0,073355

0,073084

0,072667

0,072103

ja i , м/с2

0,6864872

0,689442

0,691020821

0,691223

0,69005

0,6875

0,683574

0,678271

Страницы: 1 2 3

 
 

Исследование факта превышения скорости ТС в момент ДТП
В расследовании ДТП важно не просто восстановить обстоятельства наезда, столкновения. Очевидно, что по представленной информации эксперт прежде создает математическую модель ДТП, построенную на фактических обстоятельствах дорожного происшествия. Но чтобы завершить исследование, он должен, пользуясь этой моделью, воспроизвести ситуацию, как она могла складываться и развиваться при своевременном выполнении водителем ТС определенных требований Пра ...

Упруго-массовые характеристики лопасти
При конструировании агрегатов вертолета следует стремиться к максимально возможному снижению их массы. Это требование особую важность представляет для лопасти НВ, поскольку от ее массы зависит действующая на нее центробежная сила и, как следствие, масса втулки. Однако при этом имеют место ограничения, определяемые минимально осуществимой конструктивно-технологической массой лопасти. Уровень действующих в лопасти переменных напряжений и имеющие ...

Общая структура моделей и последовательность процедур моделирования погрузочно-транспортных модулей
В соответствии с целью и задачами исследования разработана общая последовательность процедур моделирования горнопроходческой системы, более детально – ППТМ (рис. 2.1). Исходя из системной концепции проведения выработки, этапы решения общей задачи содержат: обоснование целевой функции и системы ограничений; моделирование работы вариантов оборудования на основе адекватных математических моделей с учётом влияния случайных факторов; сопоставлени ...