Все о транспорте
 

Общее построение имитационной модели формирования потока случайных объёмов черпания

Материалы » Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий » Общее построение имитационной модели формирования потока случайных объёмов черпания

Страница 2

В действительности случайные величины Vкj и Tцj взаимозависимы, то есть после каждого конкретного значения объёма черпаний Vкj следует определённая продолжительность цикла Tцj. Вместе с тем, моделирование процессов Vкj и Tцj можно проводить независимо друг от друга.

Зная и , можно вычислить среднюю производительность за чистое время погрузки Qч как отношение этих величин; Qч является, как ранее показано, одним из исходных данных, необходимых для расчёта критериальных показателей процесса погрузки. Для построения модели эксплуатационной производительности следует учесть потери времени на вспомогательные операции и ликвидацию отказов.

Вопросам определения объёмов черпания ковшом из штабеля посвящены исследования известных учёных – Г.В. Родионова, А.Д. Костылева, С.С. Музгина, П.А. Михирева, Г.Ш. Хазановича, О.П. Иванова, В.Г. Сильня, О.Д. Гагина, В.Д. Ерейского [34–65]. Разработаны методы расчёта, базирующиеся в основном на обобщении результатов экспериментальных исследований. Созданы базовые модели сопротивлений внедрению Wвн, моментов сопротивлений зачерпыванию Мз, наполнения ковша Vк, а также методы расчёта глубины внедрения Sвн в динамическом процессе.

Однако использование эмпирических зависимостей Wвн(S), Мз(S), Vк(S, Tp) не позволяет определить реальный объём единичного захвата ковшом по следующим причинам. Во-первых, не учитывается влияние случайных факторов, в частности, размер куска перед кромками ковша. Во-вторых, опытные зависимости не увязаны в единую систему расчётных моделей, содержащих последовательность действий и необходимых силовых и энергетических ограничений, определяемых параметрами погрузочной машины.

Таким образом, совокупность математических моделей для формирования объёма единичного захвата должна состоять из специальных соотношений и процедур:

построение зависимости сопротивлений внедрению ковша от глубины внедрения с учётом влияния технологических и конструктивных факторов – Wвн(S);

методика расчёта глубины внедрения ковша в штабель Sвн под действием напорного усилия, развиваемого ходовым механизмом или независимым механизмом напора с учётом динамики процесса внедрения;

построение зависимости максимального момента сопротивлений зачерпыванию в функции глубины внедрения Mз.mах(S) с учётом влияния технологических и конструктивных факторов;

методика расчёта допустимой глубины внедрения по фактору максимальных силовых возможностей механизма черпания Smах.з;

построение зависимости объёма единичного захвата ковшом в функции глубины внедрения при раздельной траектории движения передней кромки ковша Vк(S, Tp);

определение поциклового объёма единичного черпания Vкj для допустимой по возможностям механизмов напора и зачерпывания глубины внедрения с учётом реальной вместимости ковша и возможной потери груза из-за ссыпания.

Перечисленные зависимости и ограничения получены в главе 3.

При моделировании процесса формирования производительности ШПМ ковшового типа важно представлять тип и характеристику призабойного транспортного средства, технологию взаимодействия его с ШПМ в процессе погрузки, так как это определяет изменение продолжительности цикла черпания как случайного процесса, а также необходимые затраты на удлинение транспортной подсистемы или её передислокации.

В сочетании с ШПМ ковшового типа могут использоваться все известные призабойные транспортные средства [1, 5]: одиночные вагонетки или «мини-составы» в сочетании со средствами их обмена; перегружатели для загрузки малых составов с осевым или боковым расположением; конвейерные линии с наращиванием или телескопические; самоходные вагоны или конвейерные бункер-вагонетки. Конструкция ШПМ и крепость горной массы предопределяет варианты использования призабойного транспортного оборудования. В качестве объектов для разработки моделей и исследования поцикловой продолжительности единичного черпания могут быть приняты следующие варианты погрузочно-транспортных модулей (табл. 4.1).

Страницы: 1 2 3

 
 

Тяговый баланс автомобиля
Тяговый баланс автомобиля - это совокупность графиков зависимостей силы тяги на ведущих колесах Fк, [Н] (на различных передачах), а также суммы сил сопротивления качению Ff, [Н] и воздуха Fw, [Н], от скорости движения автомобиля Va, [км/ ч]. Графики сил тяги на колесах автомобиля строим для всех ступеней коробки перемены передач. Расчет сил тяги на колесах для каждой передачи – Fki производится по формуле: , [Н] (5) hТР - коэффициент полезно ...

Расчет графика контроля буксования
Значение динамического фактора автомобиля ограничено в следствии наличия сцепления колес с дорогой. Для безостановочного движения автомобиля без пробуксовки ведущих колес необходимо выполнение следующего условия: DсцD, (29) где Dсц – динамический фактор по сцеплению. Динамический фактор автомобиля по сцеплению при различных коэффициентах сцепления φ и загрузки mx определим по формуле: Dсцх = (φ×mpi×mix)/mx, (30) где m ...

Прогноз прибыли и убытков
Норма прибыли устанавливается из расчета: 1 нормо-час в ремонтом боксе – 500 руб.; 1 нормо-час на мойке – 400 руб.; Режим работы с 10.00–21.00, т.е. 11 часов; Кол-во рабочих дней в неделю – 6 дней; Заполняемость автосервиса – 65% в день (по статистическим данным). Норма выручки = ((500 р.*11 ч.* 8 машино-мест) + (400 р.*11 ч. * 2 машино-места)) *0,65 * 24 дня = 823 680 руб. Валовую прибыль найдем по формуле: Норма выручки – прямые издер ...