Все о транспорте
 

Проходческая система как объект имитационного моделирования

Страница 1

Объектом исследования в настоящей работе является буровзрывная проходческая система (БВПС). По определению [1], БВПС представляет собой совокупность горной выработки, характеризуемой условиями её проведения, проекта выполнения буровзрывных работ, взаимосвязанных машин и механизмов и устройств, необходимых для перемещения забоя во времени и пространстве с использованием буровзрывных работ. БВПС – типично сложная система, проектирование которой необходимо вести на основе принципов системного подхода [2]. Сложность структуры и функционирования БВПС характеризуется рядом признаков: множество подсистем и элементов; постоянно изменяющиеся динамические взаимосвязи как внутри подсистем, так и между ними; зависимость конечной эффективности системы от результата каждого из процессов; существенное влияние случайных факторов – свойств горных пород в массиве и разрушенном состоянии; множество вариантов оборудования для выполнения каждого из процессов; вероятностный характер потоков отказов и восстановлений горнопроходческого оборудования.

В этих условиях проблема выбора оборудования БВПС не является тривиальной. На особенности буровзрывной проходческой системы впервые обратил внимание проф. В.Ф. Горбунов [3, 4], в работах которого разработаны принципы структурной систематизации БВПС. Дальнейшее развитие и детализация структур БВПС получила в исследованиях проф. И.В. Ляшенко, доц. В.Г. Сильня, проф. Г.Ш. Хазановича [1, 2], которые обосновали необходимость проектирования проходческих систем на основе принципов системного подхода. Это, прежде всего, относится к задаче выбора горнопроходческого оборудования.

Отметим, что в соответствии с системной концепцией задача выбора рационального варианта горнопроходческого оборудования должна решаться не для отдельной выработки, а для совокупности горнопроходческих работ предприятия (или акционерного общества, добывающей компании) в целом. Необходимо, прежде всего, определиться с целевой функцией и совокупностью ограничений. Общеизвестно [2], что задачи такого уровня являются многокритериальными. В частности, лучшим вариантом может быть признан комплект, комплекс или агрегат, обладающий наибольшей производительностью, наименьшей трудоёмкостью или стоимостью готовой продукции. Экстремумы указанных целевых функций не совпадают. В этом случае по согласованию с заказчиком необходимо либо отдать предпочтение одному из критериев, а другие принять в качестве ограничений, либо построить композицию из упомянутых критериев с использованием экспертных методов. Необходимо также формирование совокупности ограничений.

Таким образом, постановка и решение полной задачи выбора горнопроходческого оборудования является масштабной системной проблемой, содержит ряд неопределённостей, носит вариативный характер с позиций свойств критериальной функции и совокупности ограничений. Эта задача может иметь ряд иерархических уровней постановки и решения: добывающая компания; отдельная шахта; отдельная выработка; конкретный технологический процесс.

Рассматривая задачу для отдельного процесса, необходимо строго соблюдать требования непротиворечивости критериев подсистем различного уровня [2]. В частности, требование минимальной трудоёмкости работ погрузочно-транспортной подсистемы погр может не соответствовать минимизации критерия (погр +бур) min, где бур – трудоёмкость процесса бурения шпуров по забою (рис. 1.1).

Как показано ниже, методы решения задач выбора горнопроходческого оборудования в системной постановке с учётом влияния факторов статистической неопределённости не разработаны. В связи с этим на практике применяют методы интуитивные, детерминированные, с использованием типовых технологических схем.

Рис. 1.1. К вопросу о согласовании критериев различных процессов БВПС

Значительный вклад в создание расчётных моделей трудоёмкости процессов горнопроходческих работ внесли учёные научных школ ННЦ ГП – ИГД им. А.А. Скочинского, ЦНИИПодземмаша, ДонУГИ, Института угля и углехимии СО АН РФ, КузНИИШахтостроя и др. [5–9]. Следует особо отметить исследования, выполненные в ННЦ ГП – ИГД им. А.А. Скочинского под руководством проф. Э.Э. Нильвы [5, 6], которые позволили создать базу данных по удельной трудоёмкости процессов буровзрывного и комбайнового способов проведения выработок.

Математическая модель трудоёмкости позволяет определить для каждой совокупности машин и оборудования показатель удельных трудозатрат и на этой основе произвести выбор рационального варианта. Для нормативного обеспечения процедур выбора авторами произведены многочисленные хронометражные наблюдения, выполнена их обработка, получены регрессионные зависимости для коэффициентов влияния горно-геологических и организационных условий, а также средних значений трудоёмкости вспомогательных операций. Эти исследования охватили многие типоразмеры отечественного серийного горнопроходческого оборудования: бурильного, погрузочно-транспортного и крепеустановочного.

Страницы: 1 2

 
 

Проблемы и перспективы развития транспортных коридоров в России
Реализация Транспортной Стратегии должна позволить России стать полноправным участником международной транспортной системы, включиться в цепочку транзита груза. Отметим, что по данным «Известия», в настоящее время Китай формирует транзит в Европу в объеме более 2 млн. контейнеров, Корея и Япония формируют еще 2,5 млн. контейнеров. А доля российского транзита, для примера, в 2010 году составляла 140 тыс. ДФЭ (двадцатифутовый эквивалент). Эксперт ...

Определение нагрузки от ветра на опору
Роп = 0,1 × Вр × Сх × Sоп Сх − аэродинамический коэффициент лобового сопротивления для цилиндрических поверхностей, равный 0,7; Sоп − площадь опоры на которую действует ветер: Sоп = Режим максимального ветра. = 0,1 × qр × Сх × Sоп × n × 0,95 = 0,1× 542,959× 0,7×3,75×1,15×0,95= 155,7 даН Режим гололеда. = 0,1 × qр × Сх × Sоп &tim ...

Лопасти несущего винта вертолета
Лопасть НВ представляет собой вращающееся крыло большого удлинения и характеризуется определенной совокупностью геометрических и кинематических параметров, относящихся ко всей лопасти или к ее отдельном сечениям [6]. Лопасти при поступательном полете вертолета вращаются вокруг оси НВ, перемещаются вместе с вертолетом в пространстве, изменяют свое угловое положение, поворачиваясь в указанных шарнирах при каждом обороте винта [6]. Аэродинамика ...