Все о транспорте
 

Использование в экспертной практике экспериментальных значений параметров торможения ТС

Материалы » Экспертный анализ дорожно-транспортных происшествий » Использование в экспертной практике экспериментальных значений параметров торможения ТС

Страница 2

Практика, однако, свидетельствует, что далеко не всегда этот принцип соблюдается. Это можно показать на примере исследования обстоятельств наезда автомобиля «Audi А6» передней частью на неподвижный объект в условиях ограниченной видимости при скорости 60 км/ч. Экспериментом, допустим, установлено, что объект на дороге можно было обнаружить в свете фар автомобиля на расстоянии 36 м. Остановочный путь этого автомобиля при нормативном замедлении 6.8 м/с2 будет равен около 45 (≈ 44.9) м. (2.45)

А при возможном для технически исправного автомобиля «Audi А6» в подобных дорожных условиях замедлении 9.8 м/с2 он будет намного меньшим, около 38.7 м.

Сопоставление полученных результатов с дальностью видимости объекта на дороге, равной 36 м, показывает, что в обоих случаях водитель не располагал технической возможностью избежать наезда на этот объект. И потому, очевидно, здесь было бы достаточно провести расчеты по максимальной величине замедления автомобиля, поскольку при любых других возможных значениях этого параметра выводы останутся неизменными, так как остановочный путь автомобиля при замедлении, меньшем 9.8 м/с2, будет больше расчетной величины равной примерно 38.7 м.

Теперь при тех же исходных данных изменим лишь скорость автомобиля. Она должна быть определена по следам торможения «Audi А6», зафиксированным в месте происшествия.

Например, при Sю = 11.5 м. Находим скорость и остановочный путь автомобиля при нормативном замедлении, равном 6.8 м/с2. (2.46) и (2.47)

Полученные результаты дают эксперту основания утверждать, что в этом событии водитель располагал технической возможностью своевременным снижением скорости предотвратить наезд.

Теперь те же расчеты выполним по максимально возможному для технически исправного автомобиля замедлению в подобных дорожных условиях - 9.8 м/с2.

В этом случае скорость его окажется равной 60.3 км/ч (почти на 11 ед. выше, чем по 1-му варианту), а остановочный путь - 39.1 м.

Вывод получаем диаметрально противоположным, что свидетельствует об иных закономерностях, принципиально отличных от приведенных в первом варианте. Более того, и величина допустимой скорости по условиям видимости дороги будет выше при j = 9.8 м/с2, что также важно в оценке действий водителя с позиций требований Правил дорожного движения РФ, в установлении причин происшествия.

Такие необоснованные, а порой ошибочные экспертные исследования могут иметь место по довольно значительной категории дел о столкновениях и наездах транспортных средств в условиях ограниченной видимости на неподвижные или движущиеся во встречном и попутном направлениях объекты.

Таким образом, представленный анализ возможных вариантов в использовании предельных значений параметров торможения ТС определяет ряд принципиальных положений, которыми следует руководствоваться при проведении экспертных исследований.

1. Избежать ошибки в технических расчетах возможно только путем использования обоих предельных значений параметров замедления ТС – минимально допустимых для технически исправных ТС и максимально возможных в конкретных дорожных условиях места происшествия. Речь идет прежде всего о величине - j м/с2.

2. Достаточным для формирования категорического вывода может быть использование в расчетах лишь одного значения величины замедления ТС.

Минимально допустимого (например, j = 6.8 м/с2), если водитель ТС располагал технической возможностью предотвратить ДТП своевременным снижением скорости.

Или максимально возможного (например, j = 9.8 м/с2), если он не будет иметь технической возможности предотвратить ДТП.

Заметим, что такие решения будут правомерны лишь в тех случаях, если при любых других возможных значениях замедления ТС, больших в первом случае и меньших во втором, результаты технических расчетов, точнее, основанные на них выводы эксперта, не изменятся, останутся прежними.

3. В тех случаях, когда результаты исследования получаются неоднозначными, таковыми же должны быть и выводы эксперта.

С необходимыми пояснениями об условиях, определивших полученные варианты решений.

Страницы: 1 2 

 
 

Расчет взлетной массы самолета
Все свойства и параметры самолёта между собой взаимосвязаны. Математическим отображением этой взаимосвязи является уравнение баланса масс самолёта. ; где - взлётная масса самолёта. - масса коммерческой нагрузки. - относительная масса крыла. - относительная масса оперения. - относительная масса фюзеляжа. - относительная масса шасси. - силовой установки. - оборудования и управления. - снаряжения. - топлива. ...

Определение количества рабочих в аккумуляторном цехе
Определяем количество технологически необходимых рабочих (кол-во рабочих мест) по формуле: РТ = Т¢Г ОТД./ ФМ = 1303/2070 = 0,6 чел. Принимаю: РТ = 1 чел., где ФМ – действительный фонд рабочего места (с учетом количества дней работы в году отделения и продолжительности смены), по табл. №10 “Приложения” методического пособия принимаем: ФМ = 2070 чел.-час. Определяем штатное (списочное) кол-во рабочих: РШ = Т¢Г ОТД./ФР = 1303/1820 ...

Требования перед началом работы
Перед началом работы рабочий обязан осмотреть и проверить техническое состояние узлов и деталей стенда и убедиться в их исправности. Проверке на исправность и надежность подлежат: ограждения и защитные кожухи перемещающихся узлов стенда, а также их крепление; электрические кабели и провода; заземление стенда; трубопроводы и соединения гидросистемы; освещение рабочего места; система управления стендом. Работать на стенде, имеющем неисправности ...