Все о транспорте
 

Плавучесть сухопутных самолетов

Материалы » Аварии и эвакуация пассажиров из самолета » Плавучесть сухопутных самолетов

Время, в течение которого сухопутный самолет при вынужденной посадке на воду может продержаться на поверхности, зависит от его конструкции, силы ветра и состояния моря, от наличия средств для борьбы с затоплением, от веса самолета и размера повреждений, полученных им при ударе о воду. В США все типы транспортных самолетов с колесным шасси (за исключением одного) имеют низко расположенное крыло. Такое расположение крыла способствует повышению плавучести самолета и увеличивает время затопления кабины. Отмечен ряд случаев, когда пассажирские самолеты с низко расположенным крылом после вынужденной посадки длительное время держались на воде. Так, например, самолет DC-4 держался на воде 5 час. 34 мин.; DC-3 держался на плаву до тех пор, пока его не расстреляли из пушки; самолет «Констэллэйшн» плавал 1 час 45 мин. и т. д. Однако имеются случаи, когда самолеты тонули через 15, 6, 5 и даже через 3 мин. после посадки. Если пассажирский самолет с низко расположенным крылом тонет через. 3 мин., то можно считать, что больше 2 мин. после посадки в кабине оставаться нельзя. Когда при посадке на воду фюзеляж самолета разламывается на две части, что бывает довольно часто, хвостовая часть может затонуть быстрое. Некоторые новые конструкции пассажирских самолетов с низкорасположенным крылом меньшей площади и, следовательно, меньшей плавучей способности, имеющие удлиненную носовую и хвостовую части фюзеляжа, очень легко разламываются пополам при ударе о воду и быстро тонут. Время, которое остается в этом случае у пассажиров для того, чтобы перейти из самолета в спасательную лодку, не превышает 2 мин. Но даже если для этого имеется и больше времени, при такой аварии пассажиры часто тонут.

 
 

Определение максимальной скорости буксировки и силы тяги на гаке
По данным таблицы 3.2 строим графики сопротивлений R0 и R2 в прямоугольной системе координат, затем используют их для определения максимальной скорости буксировки и силы тяги на гаке (Рисунок 3.1). Рисунок 3.1 - Определение тяги на гаке и скорости буксировщика Максимальный упор гребного винта буксировщика равен 829,6 кН. Требуется определитьVбmax и силу тяги на гаке Тг. По оси ординат откладываем отрезок "0a", равный 829,6 кН. Че ...

Расчет средств скрепления транспортного пакета
В качестве средства скрепления будем использовать стальную ленту. определим толщину и ширину ленты в соответствии с гост 35060-73, т.к. значение массы транспортного пакета превышает 0,5 т, используется лента шириной 20 мм и толщиной 0,5 мм. по углам транспортного пакета под ленту подкладываются шины толщиной 2 мм, со стороной 50 мм. длина шины должна в 3 раза превышать ширину стальной ленты, в данном случае длина шины 60 мм. скрепленный транспо ...

Устройство привода выключения сцепления ВАЗ-2110
Привод выключения сцепления предназначен для обеспечения управления работой сцепления. На современных автомобилях применяются приводы выключения сцепления следующих видов: • механический привод; • гидравлический привод; • электромагнитный привод. Наибольшее применение в автомобиле нашли механический и гидравлический приводы выключения сцепления. Электромагнитный привод используется для автоматизации управления сцеплением. Механический прив ...