Все о транспорте
 

Описание состава штабеля как функции случайной величины размера куска

Страница 1

В настоящее время традиционно состав штабеля по крупности слагающих его кусков di описывается с помощью приближённой гистограммы распределения, в которой указываются диапазоны разрядов идолевое содержание объёмов фракций. Например, так называемый рядовой штабель [44] имеет разряды (в м) – 0–0,1; 0,1–0,2; 0,2–0,4; 0,4–0,6 и соответствующее процентное содержание – 30; 30; 30; 10 (рис. 2.2). С помощью гистограммы можно определить средний размер куска dср в полном объёме штабеля. Такое представление состава штабеля недостаточно информативно и не позволяет с достаточной точностью решать задачу о гранулометрическом составе малого объёма v << V, где V – объём штабеля и, соответственно, о среднем размере куска в объёме v. Это, в свою очередь, препятствует разработке математических моделей процессов взаимодействия погрузочных и транспортирующих органов со штабелем при случайном изменении размера куска.

Гранулометрический состав рядового штабеля

d, м

0…0,1

0,1…0,2

0,2…0,4

0,4…0,6

х

0…0,166

0,166….0,332

0,332…0,667

0,667…1

pi*

0,3

0,3

0,3

0,1

Рис. 2.2. Описание штабеля как функции случайной величины размера куска di

В реальном штабеле размер куска d – это непрерывная случайная величина, которая изменяется в пределах (0, dmax). Такое утверждение следует из того, что число кусков в штабеле достигает порядка 104. Поэтому состав штабеля логично представить в виде непрерывной функции F(d) (или плотности f(d)) распределения случайной величины d [93, 94].

Подбор аппроксимирующей кривой F(d) выполнен путём следующих преобразований экспериментальной гистограммы распределения (рис. 2.2):

в качестве случайной величины X выбрано отношение d/dmax, что позволило придать функции F(x) безразмерную форму;

по экспериментальным данным построена ступенчатая функция распределения , где – вероятность (частость) попадания случайной величины xn на соответствующий интервал;

через точки А1, А2, …, Аn проведена теоретическая функция распределения F(x), удовлетворяющая условиям ; , где mx – математическое ожидание случайной величины x = d/dmax;

соответствие теоретической функции распределения F(x) экспериментальным данным оценено с использованием критерия Пирсона – c2 [96].

По приведённой методике оценена степень приближения для ряда известных несимметричных функций распределения и показано, что наибольшей теснотой связи обладают логнормальное и экспоненциальное распределения. Последнее принято в качестве основного для дальнейших исследований. Функция распределения имеет вид: F(x) = a (1 – e –bx).

Значения коэффициентов a и b определялись в среде MathCad [98] по граничным условиям, заданной величине математического ожидания при минимальном среднеквадратическом отклонении искомой кривой от экспериментальных точек:

Страницы: 1 2

 
 

Определение допустимой длины пролета на прямом участке пути перегона
Подвеска путей перегона: компенсированная М-95+2МФ-100 К=2К так как 2 контактных провода в подвеске. Для вычисления допустимой длины пролета на прямых участках пути воспользуемся формулой: ; К - номинальное натяжение контактного провода МФ-100, равное 1000 даН для 1 провода и 2000 даН для 2МФ-100; Рк- статическая составляющая ветровой нагрузки на контактный провод: Сх - аэродинамический коэффициент, равный 1,55; d = H =11,8 мм – высот ...

Разборка переднего моста
Устройство переднего моста автомобиля. Показано на рис. 1. Рис. 1 - Передний мост автомобиля: 1-ступица; 2-подшипник ступицы, 3 и 26-гайки, 4-мочное кольцо, 5-контргайка, 6-поворотная цапфа, 7-замочная шайба, 8-уплотнение, 9-разжимной кулак, 10-тормозной барабан, 11-опорный диск, 12- кронштейн тормозной камеры, 13-масленка, 14-регулировачный рычаг, 15-вал разжимного кулака, 16-продольная рулевая тяга, 17-втулка шкворня, 18-регулировачные про ...

Определение длины контррельсов и усовиков
Контррельсы направляют колёса подвижного состава в соответствующий желоб и предохраняют сердечник у острия от горизонтальных давлений и ударов. Размеры контррельса также связаны с размерами отдельных частей крестовины. Расчётная схема для определения размеров контррельса составлена исходя из следующих условий: прямолинейная часть контррельса должна перекрывать расстояние от горла крестовины до сечения сердечника, имеющего ширину bс = 40 мм, с з ...